Question	Answer	Marks	Guidance
1	С	1	

Q	uestio	on	Answer	Marks	Guidance
2	(a)		$[H^{+}] = 10^{-pH} = 10^{-2.19} = 6.46 \times 10^{-3} \text{ (mol dm}^{-3}) \checkmark$ $[CH_{3}CH(OH)COOH] = \frac{[H^{+}]^{2}}{K_{a}} = \frac{(6.46 \times 10^{-3})^{2}}{1.38 \times 10^{-4}} \checkmark$ $= 0.0302 \text{ (mol dm}^{-3}) \checkmark$ $n(CH_{3}CH(OH)COOH) = \frac{0.302 \times 250}{1000} = 0.0755 \text{ mol } \checkmark$ $n(CH_{3}CH(OH)COOH) = 0.0755 \times 90 = 6.80 \text{ g} \checkmark$ Dissolve 6.80 g of the solid in distilled water (less than 250 cm ³) in a beaker \checkmark (then) transfer the solution to a 250 cm ³ volumetric flask AND ensure that all solution is washed out of beaker (washings transferred to volumetric flask) \checkmark (then) make solution up to 250 cm ³ with distilled water AND ensure thorough mixing by inverting the flask several times \checkmark	8	ALLOW 5 marks for 6.80 g through any calculation. ALLOW ECF for incorrect calculation of mass. Mass used must be linked to calculation.
	(b)		CH ₃ CH(OH)COO ⁻ + CH ₃ CH ₂ CH ₂ COOH ₂ ⁺ \checkmark CH ₃ CH(OH)COOH AND CH ₃ CH(OH)COO ⁻ CH ₃ CH ₂ CH ₂ COOH AND CH ₃ CH ₂ CH ₂ COOH ₂ ⁺ Both pairs identified \checkmark	2	State symbols NOT required ALLOW labels 'acid 1', 'base 1' etc. ALLOW ECF for second mark

OCR (A) Chemistry A-Level - Acids, Bases and Buffers

Qı	Question		Answer	Marks	Guidance
	(c)	(i)	$[H^{+}] = \frac{1 \times 10^{-14}}{0.185} = 5.405 \times 10^{-14} \text{(Use of } K_w\text{)} \checkmark$ $pH = -\log(5.405 \times 10^{-14}) = 13.27 \checkmark$	2	ALLOW 5.405405405 × 10^{-14} and correct rounding to 5.4 × 10^{-14} ALLOW alternative approach using pOH: pOH = $-\log(0.185) = 0.73$ pH = $14 - 0.73 = 13.27$ Correct answer scores BOTH marks ALLOW 13.267
		(ii)	$n(A^{-}) = 9.25 \times 10^{-3} \text{ (mol) } \checkmark$ $n(HA) = 0.0165 - 9.25 \times 10^{-3} = 7.25 \times 10^{-3} \text{ (mol) } \checkmark$ $[H^{+}] = K_{a} \times [HA] \checkmark$ $pH = -\log(1.5 \times 10^{-5} \times 0.058) = 4.93$ $0R \text{ pH} = -\log(1.5 \times 10^{-5} \times \frac{1000 \times \frac{7.25 \times 10^{-3}}{125}}{1000 \times \frac{9.25 \times 10^{-3}}{125}}) = 4.93 \checkmark$ Final mark also via Henderson–Hasselbalch equation: $pH = pK_{a} - \log \frac{[HA]}{[A^{-}]} = 4.82 - (-0.11) = 4.93$ $OR \text{ pH} = pK_{a} + \log \frac{[A^{-}]}{[HA]} = 4.82 + 0.11 = 4.93 \checkmark$	4	ALLOW HA/acid and A ⁻ /salt throughout for butanoate and butanoic acid ALLOW pK _a = -log K _a OR -log 1.5×10^{-3} OR 4.82 ALLOW ECF from incorrect values of $n(A^-)$ or n(HA) ALLOW pH = -log $(1.5 \times 10^{-5} \times \frac{7.25 \times 10^{-3}}{9.25 \times 10^{-3}}) =$ 4.93
			Total	16	

Question	Answer	Marks	Guidance
3 (a)*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Develops a plan that allows identification of all six ions AND includes essential detail and equations for all test procedures and observations, with three anion tests in the correct sequence, CO_3^{2-} , SO_4^{2-} then CT AND includes cation test with essential detail and all equations There is a well-developed, detailed plan which is clear and logically structured. The plan is substantiated with relevant information, e.g. justification of the sequence of anion tests. There is a clear explanation of how the observations allow the ions to be identified. Level 2 (3–4 marks) Develops a plan that allows identification of at least three ions AND includes detail of at least three test procedures and observations, and three equations There is an appropriate plan presented with some structure. Parts of the fine detail, correct sequence, or reference to use of both samples may be missing. There is some attempt to explain how the observations allow the ions to be identified.	6	Indicative scientific points may include:Use one sample for cation test, other sample for anion testsDetails of testsCation test add Aqueous sodium hydroxidePositive observations • for Mn^{2^+} : pink/buff precipitate • for Fe^{2^+} : green precipitate • for NH_4^+ : litmus paper held over the opening of the tube turns blueFine detail: • (gentle) heating for NH_4^+ testEquations: $Mn^{2^+} + 2OH^- \rightarrow Fe(OH)_2$ $NH_4^+ + OH^- \rightarrow NH_3 + H_2O$ Anion tests $CO_3^{2^-}$: • add nitric acid; positive observation: effervescence $SO_4^{2^-}$: • add aqueous barium nitrate; positive observation: white precipitateCl: • add silver nitrate solution; positive observation: white precipitate

Question	Answer	Marks	Guidance
	Level 1 (1–2 marks) Develops a plan that allows identification of at least two ions AND includes detail of at least two test procedures and observations, and one equation The plan is basic and communicated in an unstructured way. The response lacks fine detail and no reference to correct sequence of anion tests. There is little or no attempt to explain how the observations allow the ions to be identified. 0 marks No response or no response worthy of credit.		 subsequent addition of dilute ammonia solution positive observation: precipitate dissolves. Fine detail: correct sequence of all three anion tests carbonate test followed by sulfate test followed by halide test justification of sequence ALLOW splitting of solution over three boiling tubes/test tubes and performing each test on a different sample. Equations: CO₃²⁻ + H⁺ → CO₂ + H₂O Ba²⁺ + SO₄²⁻ → BaSO₄ Ag⁺ + Cl → AgCl
(b)	$K_{w} \text{ value from graph from } 2.2 \text{ to } 2.4 \times 10^{-14} \text{ (mol}^{2} \text{ dm}^{-6}) \checkmark$ $Using 2.4 \times 10^{-14},$ $[H^{+}] = \sqrt{2.4 \times 10^{-14}} \text{ OR } 1.55 \times 10^{-7} \checkmark$ $pH = -\log (1.55 \times 10^{-7}) = 6.81 \text{ (using } K_{w} = 2.4 \times 10^{-14}) \checkmark$	3	Actual $K_w = 2.38 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$ ALLOW ECF only if candidate uses a value between 2.0 and 2.6 × 10 ⁻¹⁴ (mol ² dm ⁻⁶), i.e. from the approximately correct region of the graph ALLOW 6.8 (1DP) up to calculator value ALLOW ECF only if candidate has generated a value of [H ⁺] by attempting to take a square root of a value between 2.0 and 3.0 × 10 ⁻¹⁴
(c) (i)	Co: N: H: Cl = $\frac{21.98}{58.9}$: $\frac{31.35}{14.0}$: $\frac{6.72}{1.0}$: $\frac{39.75}{35.5}$	2	

Question	stion Answer		Guidance
	= 0.373 : 2.24 : 6.72 : 1.12 ✓		
	= 1 : 6 : 18 : 3		
	$Formula = CoN_6H_{18}Cl_3 \checkmark$		
(ii)	[Co(NH ₃) ₆] ³⁺ ✓	1	
	Total	12	

Q	Question		Answer	Marks	Guidance	
4	4 (a) (i)		1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ ✓	1		
		(ii)	4	1		
	(b)		$[Fe(CN)_6]^{3-} \text{ shown as product in equation } ✓$ Remaining species and balancing correct balanced equation: $[Fe(H_2O)_6]^{3+} + 6CN^- \rightarrow [Fe(CN)_6]^{3-} + 6H_2O \checkmark$	2	Notice different charges on complex ions: LHS 3+, RHS 3– ALLOW equations with KCN, i.e.: $[Fe(H_2O)_6]^{3^+} + 6KCN$ $\rightarrow [Fe(CN)_6]^{3^-} + 6K^+ + 6H_2O$ $[Fe(H_2O)_6]^{3^+} + 6K^+ + 6CN^-$ $\rightarrow [Fe(CN)_6]^{3^-} + 6K^+ + 6H_2O$ state symbols not required	
	(c)	(i)	$K_{a} = \frac{[[Fe(H_{2}O)_{5}OH]^{2+}(aq)][H^{+}(aq)]}{[[Fe(H_{2}O)_{6}]^{3+}(aq)]} \checkmark$	1	state symbols not required	
		(ii)	$[H^{+}] = \sqrt{6.00 \times 10^{-3} \times 0.100} \text{ OR } 0.0245 \text{ (mol dm}^{-3}) \checkmark$ $pH = -\log 0.0245 = 1.61 \checkmark$	2	ALLOW ECF from calculated [H ⁺] provided that BOTH 6.0×10^{-3} AND 0.100 only have been used ALLOW calculation via quadratic equation \rightarrow pH 1.66	
	(d)		ClO^{-} + H_2O + 2 e^{-} → Cl^{-} + 2 OH^{-} ✓ Fe ₂ O ₃ + 10 OH^{-} → 2FeO ₄ ²⁻ + 5 H_2O + 6 e^{-} ✓	3	ALLOW multiples throughout	

Q	uesti	on	Answer	Marks	Guidance
			Fe ₂ O ₃ + 3C <i>l</i> O ⁻ + 4OH ⁻ → 2FeO ₄ ²⁻ + 3C <i>l</i> ⁻ + 2H ₂ O \checkmark		
			Total	10	

Question	Answer	Marks	Guidance
5	C	1	ALLOW 4.1 in the box

Q	Question		Answer			Marks	Guidance	
6	(a)		FIRST, CHECK IF answer = 0.75 $[H^+] = 10^{-pH} = 10^{-pH}$ $[CH_3COOH] = \frac{[H]}{\mu}$ = 0.753 (mol dm ⁻¹)	THE ANSWER (3 , award 3 mark $-2.440 = 3.63 \times 10^{10}$ $\frac{(1^{+})^2}{\sqrt{a}}$ OR $\frac{(3.63 \times 10^{-3})}{1.75 \times 10^{-3}}$	DN ANSWER (s) $^{-3}$ (mol dm ⁻³) \checkmark $\frac{10^{-3})^2}{10^{-5}} \checkmark$	LINE /	3	ALLOW use of HA and A ⁻ ALLOW 3 SF up to calculator value of $3.630780548 \times 10^{-3}$ correctly rounded NOTE: Answer is same from unrounded [H ⁺] calculator value and 3 SF [H ⁺] value ALLOW 0.749 if [H ⁺] has been subtracted from [CH ₃ COOH] for greater accuracy at end
	(b)		CH₃COOH + FC B2 OR B1 <i>i.e. labels other v</i>	CH₂COOH A1 A2 way round	CH ₃ COOH ₂ ⁺ - A2 A1	+ FCH ₂ COO ⁻ - B1 B2 -	2	Watch for opposite order on RHS, i.e.: FCH ₂ COO ⁻ + CH ₃ COOH ₂ ⁺ Take great care matching labels ALLOW ECF for incorrect proton transfer as below. This is the ONLY ECF CH ₃ COOH + FCH ₂ COOH \rightleftharpoons CH ₃ COO ⁻ + FCH ₂ COOH ₂ ⁺ × A1 B2 B1 A2 OR A2 B1 B2 A1 ✓ECF <i>i.e. labels other way round</i>

(c)(i)[CH_5COO] $n(CH_5COO] = \frac{9.08}{82.0} \times 1000$ $(CH_5COO] = \frac{9.08}{82.0} \times 1000$ $(CH_5COO] = \frac{9.08}{82.0} \times 1000$ $(250) = 0.443 (mol dm^{-3})$ $OR n(CH_5COOH) = 0.800 \times \frac{250}{1000} = 0.200 (mol) \checkmark5ALLOW 2 sig figALLOW use of HA and A-Mark by ECF[H-](H^-)_{5}COOH = 0.800 \times \frac{250}{1000} = 0.200 (mol) \checkmark(H^-)_{1}(H^-)_{1} = K_{a} \times \frac{[CH_5COOH]}{[CH_5COO]} OR K_{a} \times \frac{n(CH_{a}COOH)}{n(CH_{5}COO})= 1.75 \times 10^{-5} \times \frac{0.800}{0.443} OR 1.75 \times 10^{-5} \times \frac{0.200}{0.111} \checkmark= 3.16 \times 10^{-5} (mol dm^{-3}) \checkmark= 0.443 (mol dm^{-3}) \land= 0.443 (mol dm^{-3}) \checkmark= 0.443 (mol dm^{-3}) \land= 0.443 (mol dm^{-3}) \land$	Question Answer Marks Guidance	
	detection Induct Induct <td>d, mark the gher mark) \checkmark 300 $\times 10^{-5}$ \checkmark $13 \times \frac{250}{1000}$ \checkmark 60 4 marks 4 marks</td>	d, mark the gher mark) \checkmark 300 $\times 10^{-5}$ \checkmark $13 \times \frac{250}{1000}$ \checkmark 60 4 marks 4 marks

OCR (A) Chemistry A-Level - Acids, Bases and Buffers

Question		on	Answer	Marks	Guidance
		(ii)	pH is the same/constant ✓	2	M2 is dependent upon M1
			ratio/proportion [HA]/[A ⁻] is the same \checkmark		ALLOW Change in [HA] and [A [−]] is proportional
			Total	12	

Question	Answer	Marks	AO	Guidance
Question			element	Guidance
7	C	1	AO2.6	

Question		on	Answer	Marks	Guidance
8	(a)	(i)	$K_{a} = \frac{[H^{+}] [CH_{3}COO^{-}]}{[CH_{3}COOH]} \checkmark$	1	IGNORE state symbols Must be square brackets
					IGNORE expressions with HA or with $[H^+]^2$
		(ii)	FIRST, CHECK ANSWER ON ANSWER LINE IF answer = 4.76 award 3 marks	3	ALLOW use of HA and A [−]
			$[H^+] = 10^{-pH}$ = 10 ^{-2.41} = 3.89 × 10 ⁻³ (mol dm ⁻³) ✓		ALLOW 3 SF up to calculator value of: $3.89045145 \times 10^{-3}$ correctly rounded
			$= \frac{[H^+]^2}{[CH_3COOH]} = \frac{(3.89 \times 10^{-3})^2}{0.870}$		K_a 1.739725573 × 10 ⁻³ NOTE: 1.74 × 10 ⁻⁵ is same from unrounded [H ⁺] calculator
			= $1.74 \times 10^{\circ}$ (mol dm °) \checkmark p K_{a} = $-\log K_{a} = -\log 1.74 \times 10^{-5} = 4.76 \checkmark$		2 DP required
		(iii)	% dissociation = $\frac{[H^+]}{[CH_3COOH]} \times 100$ = $\frac{3.89 \times 10^{-3}}{0.870} \times 100 = 0.447(\%) \checkmark$	1	3 SF required

Question	Answer	Marks	Guidance
(b)	FIRST, CHECK ANSWER ON ANSWER LINE IF answer = 95.9(%) award 4 marks	4	ALLOW ECF throughout
	$[H^+] = 10^{-pH}$ = 10 ^{-13.48} = 3.31 × 10 ⁻¹⁴ (mol dm ⁻³) ✓		IGNORE rounding errors beyond 3 rd SF throughout
			ALLOW 3.3×10^{-14} (mol dm ⁻³)
	[OH ⁻] from K_w 1.00 × 10 ⁻¹⁴		ALLOW 0.30 ALLOW 0.303 if 3.3×10^{-14} used in the first marking point
	$= \frac{1}{3.31 \times 10^{-14}} = 0.302 \text{ (mol dm °) }$		
			ALLOW pOH method:, pOH = $14 - 13.48 = 0.52$
			$[OH^{-}] = 10^{-0.52} = 0.302 \text{ (mol dm}^{-3}\text{)}$
	<i>Mass of</i> (NaOH) = 0.302 × 100/1000 × 40.0 = 1.21 (g) ✓		ALLOW [OH ⁻] × 0.1 × 40
	% of NaOH to 3 SF = $\frac{1.21}{1.26}$ × 100 = 95.9 (%) ✓		Rounding [OH ⁻] to 0.3(0) gives 1.2/1.26 = 95.2% Award 4 marks Rounding [OH ⁻] to 0.303 gives 1.212/1.26 = 96.2% Award 4 marks

Question	Answer	Marks	Guidance
(C)		2	 NOT REQUIRED Charge ('2–') IGNORE incorrect charges Brackets Circles IGNORE inner shells
	Global rules		ALLOW rotated diagram
	 C and O electrons must be shown differently, e.g. • for C and × for O Na electrons shown with different symbol 		ALLOW diagram with missing C or O symbols.
	 MARKING Bonding around central C atom √ 4 electrons for C shown as • OR × 4 electrons for O, different from C as • OR × 		
	• C=O bond with 2 C electrons AND 2 O electrons		In C=O bond, ALLOW sequence ×ו•
	electron		In C–O bond , ALLOW 'extra' electron with different symbol for O electron
	Non-bonded (nb) electrons around 3 O atoms ✓		
	 C=O oxygen has 4 nb 'O' electrons Each C–O oxygen has 5 nb 'O' electrons 		ALLOW non-bonding electrons unpaired
	AND 1 'extra' electron with different symbol		ALLOW 'extra' electron as • OR × if it has been labelled 'extra electron' or similar
	Total	11	

Question	Answer	Marks	AO	Guidance	
			element	Culturio	
9	D	1	AO1.2		

Qu	Question		Answer	Marks	AO element	Guidance
10	(a)		Please refer to the marking instructions on page 4 of this	6	1.1 ×2	Indicative scientific points may include:
			mark scheme for guidance on how to mark this question.		1.2 ×2	(State symbols not required in equations)
10	(a)		 Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 mark) Detailed explanation of equilibrium, the action of the buffer and correct calculation of [HCO₃⁻] : [H₂CO₃] ratio. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Detailed explanation of equilibrium and the action of the buffer. OR Detailed explanation of the action of the buffer and correct calculation of [HCO₃] : [H₂CO₃] ratio. OR Detailed explanation of the action of the buffer and correct calculation of [HCO₃] : [H₂CO₃] ratio. OR Partial explanations of equilibrium, and the action of the buffer and attempt calculation of [HCO₃] : [H₂CO₃] ratio. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) 	6	1.1 ×2 1.2 ×2 3.1 ×1 3.2 ×1	Indicative scientific points may include: (State symbols not required in equations) Equilibrium and equilibrium shifts • $H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$ • Addition of H^+ causes \rightleftharpoons to shift to left • Addition of OH ⁻ causes \rightleftharpoons to shift to right Action of buffer • Increase in H^+ / addition of acid leads to: $H^+(aq) + HCO_3^-(aq) \rightarrow H_2CO_3(aq)$ OR HCO_3^- reacts with added acid • Increase in OH ⁻ / addition of alkali leads to: $H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$ OR $H_2CO_3(aq) + OH^-(aq) \rightarrow HCO_3^-(aq) + H_2O(I)$ OR H_2CO_3 reacts with added alkali Calculation of [HCO_3^-] : [H_2CO_3] ratio • $K_a = 10^{-6.38}$ OR 4.17×10^{-7} (mol dm ⁻³) • [H ⁺] = $10^{-7.40}$ OR 3.98×10^{-8} (mol dm ⁻³) • $\frac{[HCO_3^-]}{[H_2CO_3]}$ OR $\frac{4.17 \times 10^{-7}}{3.98 \times 10^{-8}}$ • ratio = $10.47(:1)$ OR $10.48(:1)$
			Detailed explanation of equilibrium.			ALLOW 10.5 OR 10(:1) (after working shown)
			Correct calculation of $[HCO_3^-]$: $[H_2CO_3]$ ratio. OR Detailed explanation of the action of the buffer. OR Partial explanations of equilibrium and the action of the buffer.'			ALLOW $\frac{4.2 \times 10^{-7}}{4.0 \times 10^{-8}}$ And ratio = 10.5 OR 11 (after working shown)

Question	Answer	Marks	AO element	Guidance
	ORPartial explanation of equilibrium and attempt at calculation of $[HCO_3]$: $[H_2CO_3]$ ratio.'ORPartial explanation of the action of the buffer and attempt at calculation of $[HCO_3]$: $[H_2CO_3]$ ratio.There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.O marks No response or no response worthy of credit.			ALLOW $\frac{[H_2CO_3]}{[HCO_3^-]}$ OR $\frac{3.98 \times 10^-}{4.17 \times 10^{-7}}$ And ratio = 1 : 0.095
(b)	Coordinate bond mark O₂ (coordinately or datively) bonds with Fe ²⁺ /Fe(II)/Fe/Iron ✓	3	1.1 ×2	ALLOW names or symbols of ligands ALLOW H ₂ O/CO/CO ₂ (coordinately or datively) bonds with Fe ²⁺ /Fe(II)/Fe/Iron ALLOW oxygen donates electron pair to OR binds with Fe ²⁺ /Fe(II)/Fe/Iron DO NOT ALLOW Fe ³⁺
	Ligand substitution mark (When required) O_2 is replaced by H_2O OR CO_2 OR O_2 is replaced by CO OR H_2O OR CO_2 is replaced by $O_2 \checkmark$			ALLOW other words for replaced
	Ligand strength mark CO forms strong(er) bonds (than O_2) \checkmark		2.1 ×1	ALLOW K _{stab} for CO (much) higher (than for O ₂) ALLOW CO bonds irreversibly OR CO is a strong(er) ligand IGNORE affinity
	Total	9		

Qı	uesti	on	Answer	Marks	AO element	Guidance
11	(a)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 2.98 award 2 marks $[H^{+}] = \sqrt{(Ka \times [C_2H_5COOH])} = 1.039 \times 10^{-3} \text{ (mol dm}^{-3}) \checkmark$ pH = -log 1.039 × 10 ⁻³ = 2.98 (Must be to 2 DP) \checkmark	2	2.2 ×2	ALLOW ECF throughout ONLY ALLOW pH mark by ECF if K _a AND 0.080 used and AND pH <7 Common errors (Must be to 2 DP) One mark for pH = 5.97 (<i>No square root</i>): One mark for pH = 0.92 OR pH = 5.15 (Using incorrect K, values)
	(b)	(i)	$n(C_2H_5COOH) = (0.0800 \times \frac{25.0}{1000}) =) 0.002 \text{ (mol)}$ AND $V(\text{NaOH}) = \frac{0.002}{0.100} \times 1000 = (= 20(.0) \text{ cm}^3) \checkmark$	1	2.5	ALLOW 0.02 dm ³ if unit given Mark is for WORKING which could all be shown as 1 step ALLOW method showing 20cm ³ NaOH contains the same moles as acid $n(C_2H_5COOH) = 0.08(00) \times 0.025(0) = 0.002$ (mol) and $n(NaOH) = 0.02(00) \times 0.1 = 0.002(00)$ (mol)
	b	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE	4		ALLOW ECF throughout

Question	n	Answer	Marks	AO element	Guidance
		If answer = 12.55 award 4 marks Excess mol of NaOH: $n(OH^{-})_{excess} = n(OH^{-}) - n(C_{2}H_{5}COOH)$ $= (0.100 \times \frac{45.0}{1000}) - (0.0800 \times \frac{25.0}{1000})$ $= 0.0045 - 0.002 = 0.0025 \text{ (mol)} \checkmark$ Concentration of OH: $[OH^{-}] = (\frac{0.0025}{70.0 \times 10^{-3}}) = 0.0357 \text{ (mol dm}^{-3}) \checkmark$ Concentration of H ⁺ : $[H^{+}] = (\frac{1.00 \times 10^{-14}}{0.0357}) = 2.8 \times 10^{-13} \text{ (mol dm}^{-3}) \checkmark$ Conversion to pH: $pH = (-\log 2.8 \times 10^{-13}) = 12.55 \checkmark$		1.2 ×1 2.6 ×3	For first mark ALLOW (Excess volume of NaOH = 25(.0) cm ³) $n(OH^{-})_{excess} = 0.100 \times \frac{25.0}{1000} = 0.0025 \text{ (mol)}$ Common errors If initial $V(NaOH) = 45 \text{ cm}^3$ $[OH^{-}] = 0.0643 \text{ (mol)}$ $[H^{+}] = 1.56 \times 10^{-13} \text{ (mol dm}^{-3})$ pH = 12.81 award three marks (no 1st mark) If $n(OH^{-})_{excess}$ is used in $[H^{+}]$ calculation $n(OH^{-})_{excess} = 0.0025 \text{ (mol)}$ $[H^{+}] = \frac{1.00 \times 10^{-14}}{0.0025} = 4.(00) \times 10^{-12} \text{ (mol dm}^{-3})$ pH = 11.40 award three marks (no 2nd mark) ALLOW pOH method for last two marks $pOH = -\log[OH^{-}] = 1.447$ pH = 14 - 1.447 = 12.55 ALLOW ECF for conversion from $[H^{+}]$ to pH provided value calculated is above 7 and from derived $[H^{+}]$
b ((iii)	Shape	3	2.3 ×1	If pH curves wrong way round (i.e. adding acid to

Question	Answer	Marks	AO element	Guidance
	Slight rise/flat, AND (near) vertical, AND then slight rise/flat ✓ pH Vertical section within the extremes of pH 5 to 12 and a minimum range of three pH units AND middle of vertical section (equivalence point) needs to be above pH 7 ✓ End point Vertical section at ~ 20 cm ³ NaOH ✓		2.4 ×2	alkali), ONLY award mark for End point (~ 20 cm ³)
(iv)	cresol purple AND pH range matches vertical section/rapid pH change OR end point/colour change matches vertical section/rapid pH change √	1	3.3	 ALLOW pH range (of the indicator) matches equivalence point ALLOW end point/colour change matches equivalence point IGNORE colour change matches end point Colour change is the same as end point
(V)	 similarity: end point / volume (20 cm³) of NaOH needed to neutralise OR final pH / shape of curve after end point ✓ difference: HCN higher starting pH OR HCN shorter vertical section ✓ 	2	3.2 ×2	End point must not refer to same pH ALLOW different equivalence point IGNORE different starting pH

C	uestio	n Answer	Marks	AO element	Guidance
	(c)	 HIO₃ dissociation is not negligible / dissociates to a significant extent OR Large K_a and HIO₃ is 'stronger' (weak) acid OR [HIO₃]_{eqm} is significantly lower than [HIO₃]_{initial/undissociated} ✓ 	1	3.3	ALLOW use of HA Ignore $[HIO_3]_{equilibrium} < [HIO_3]_{initial/undissociated}$ ALLOW $[HIO_3]_{equilibrium} \sim [HIO_3]_{undissociated}$ is no longer a valid assumption ALLOW $[HIO_3]$ has a larger K_a so the assumption that $[HIO_3]$ has a larger K_a so the assumption that $[HIO_3]$ at equilibrium = $[HIO_3]$ initially so assumption is not valid
		Total	15		

Question	Answer	Marks	AO element	Guidance
12 (a) (i)	4-chloro-3,5-dimethylphenol ✓	1	AO1.2	ALLOW 3,5-dimethyl-4-chlorophenol
	CARE: Look for dimethyl			ALLOW absence of hyphens or extra hyphen or space, e.g. 4 chloro 3,5 dimethylphenolALLOW full stops or spaces between numbers e.g. 4-chloro-3.5-dimethylphenol
				ALLOW name based on benzene, if unambiguous e.g.1-chloro-4-hydroxy-2,6-dimethylbenzene
				DO NOT ALLOW meth OR methy
(ii)	5 ✓	1	AO2.5	
	Functional group Phenol ✓ Test Indicator/pH paper turns red / orange OR pH < 7 OR pH meter < 7 AND No reaction with Na₂CO₃/CO₃²⁻/carbonate ✓	2	AO1.2 AO2.3	DO NOT ALLOW alcohol OR hydroxide IGNORE hydroxyl OR hydroxy IGNORE OH (<i>name asked for</i>) ALLOW Add bromine AND white precipitate ALLOW FeCl ₃ AND violet/blue colour

Question	Answer	Marks	AO element	Guidance	
(iv)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 1.71×10^{-10} , award FOUR calculation marks CARE Separate mark for equation 	5	AO1.2 ×1	ALLOW → for \rightleftharpoons DO NOT ALLOW C ₈ H ₈ ClOH in equation i.e. C ₈ H ₈ ClOH \rightleftharpoons H ⁺ + C ₈ H ₈ ClO ⁻ If equation is omitted, ALLOW equation mark for a correct K _a expression with molecular formula i.e. $\frac{[H^+][C_8H_8ClO^-]}{[C_8H_9ClO]}$	
	$\begin{bmatrix} \mathbf{C}_{8}\mathbf{H}_{9}\mathbf{CIO} \end{bmatrix} \text{ calculation (2 marks)} \\ \text{Molar mass } \mathbf{C}_{8}\mathbf{H}_{9}\mathbf{CIO} = 156.5 \text{ (g mol}^{-1}) \checkmark \\ \mathbf{ONLY} \text{ correct answer} \\ \begin{bmatrix} \mathbf{C}_{8}\mathbf{H}_{9}\mathbf{CIO} \end{bmatrix} = \frac{4.8 \times 10}{156.5} \mathbf{OR} \ 0.3067 \text{ (mol dm}^{-3}) \checkmark \\ \text{Subsumes mark for molar mass} = 156.5 \\ \mathbf{K}_{a} \text{ calculation (2 marks)} \\ \begin{bmatrix} \mathbf{H}^{+} \end{bmatrix} = 10^{-5.14} = 7.244 \times 10^{-6} \text{ (mol dm}^{-3}) \checkmark \\ \mathbf{K}_{a} = \frac{(7.244 \times 10^{-6})^{2}}{0.3067} = 1.71 \times 10^{-10} \text{ (mol dm}^{-3}) \checkmark \end{aligned}$		AO2.8 ×4	NO ECF from an incorrect formula in equation ALLOW ECF from incorrect molar mass ALLOW 0.307 up to calculator value: 0.306709265 correctly rounded ALLOW 7.24 × 10 ⁻⁶ up to calculator value: 7.244359601 × 10 ⁻⁶ correctly rounded ALLOW 2 SF (1.7 × 10 ⁻¹⁰) up to calculator value, correctly rounded (but take care from acceptable intermediate rounding) COMMON ERRORS 2.36 × 10 ⁻⁵ 3/4 calculation marks	
				No squaring of 7.24 \times 10 ⁻⁶	

Question	Answer	Marks	AO element	Guidance
(b) (i)	ж v он	1	AO2.5	DO NOT ALLOW more than one * ALLOW a circle for *
	MAXIMUM OF 4 MARKS FROM 5 MARKING POINTS Requirement for E/Z isomerism 2 marks C=C/double bond ✓ Each C (in C=C) is attached to (two) different groups/atoms ✓ Identification as E- or Z- isomer 2 marks E/Z isomerism linked to (high) priority groups ✓ Z- isomer AND groups are on same side OR the ring carbons ✓ Reason why other E/Z isomer does not exist 1 mark ring would be strained OR ring would break/deform OR Cannot form ring if high priority groups are on opposite sides OR ring locks groups on one side of C=C bond ✓	4	AO1.2 ×2 AO2.5 ×2	IGNORE no H attached to C=C IGNORE functional', i.e. ALLOW different functional groups ALLOW in context of groups with largest atomic number <i>ORA</i> <i>Award BOTH identification marks for:</i> <i>Z</i> - isomer AND (high) priority groups on same side Mark independently of previous part Response MUST be linked to the ring/cyclic structure IGNORE just ' <i>E</i> isomer is impossible' IGNORE C=C bond cannot rotate IGNORE Groups can't swap sides

Question	Answer	Marks	AO element	Guidance
(iii)	First group:	4	AO3.2	CONTACT TEAM LEADER FOR OTHER REACTIONS
	AND		×4	ALLOW GROUPS EITHER WAY ROUND IN BOXES
	Functional group: Alkene OR cycloalkene ✓			Functional group MUST be named
	Examples of reagents Br ₂ or other halogen, HBr, H ₂ AND Ni (catalyst) H ₂ O(g)/steam AND H ⁺ (catalyst)	,		DO NOT ALLOW UV with halogens ALLOW $H_2SO_4/H_3PO_4/acid$ for H^+
	Organic product for reagent with C=C in α -terpineo ALLOW product from H_2 or H_2O if H^+ catalyst has be omitted from reagent.	√ en		ALLOW addition of HBr/ H_2O either way across C=C
	Second group Reagent AND Functional group: (Tertiary) alcohol ✓			
	Examples of reagents NaBr/KBr/Br [−] AND acid/H ⁺ (substitution OR HBr),		ALLOW ANY HALIDE, i.e. CI^- , Br^- , I^- ALLOW $H_2SO_4/H_3PO_4/acid for H^+$ ALLOW HBr for H ⁺ and Br^-
	Acid/H(catalyst)(elimination CH_3COOH AND acid/H ⁺ (catalyst)(esterification $CH_3COOCOCH_3$ (esterification CH_3COOCI (esterification)	, n) n)		ALLOW name or formula of any carboxylic acid or acyl chloride for esterification
	Organic product for reagent with OH in α-terpineol ALLOW product if catalyst omitted from reagent	/		ALLOW Na \rightarrow product with –ONa OR –O ⁻ DO NOT ALLOW Cr ₂ O ₇ ^{2–} /H ⁺ (tertiary alcohol)
	Τ	otal 18		

Question	Answer	Marks	AO element	Guidance
13	D	1	2.2	

Q	uesti	ion	on Answer				Marks	AO element	Guidance
14	(a)		Equation:	Mg + 2CH	l₃COOH → (CH₃COO)₂Mg + H₂ ✓	3	2.6	ALLOW Mg(CH ₃ COO) ₂ ALLOW multiples IGNORE Oxidation numbers in formulae IGNORE state symbols
			Oxidation:	Mgfro	om 0 to +2 🗸			1.2	Mark independently from equation
			Reduction:	H fron	n +1 to 0 ✓			1.2	ALLOW 1 mark for correct oxidation numbers but incorrectly linked to redox.
	(b)		HCOOH + C	CH₃COOH ≂	≥ HCOO [_] + (CH3COOH2⁺ ✓	2	1.2×2	IGNORE state symbols (even if wrong)
			A1 OR A2 CARE: Both + and - DO NOT AV expression	B2 B1 - charges re VARD the 2 that omits ei	B1 B2 equired for p and mark fro ither charge	A2 A1 ✓ products in equilibrium m an equilibrium			IF proton transfer is wrong way around ALLOW 2nd mark for idea of acid–base pairs, <i>i.e.</i> HCOOH + CH ₃ COOH ⇒ HCOOH ₂ ⁺ + CH ₃ COO ⁻ B2 A1 A2 B1 NOTE For the 2nd marking point (acid–base pairs), this is the ONLY acceptable ECF <i>i.e. NO ECF from impossible chemistry</i>
	(c)	(i)	[H ⁺] = 10 ^{−2.7;} [CH₃COOH]	2 OR 1.905 $ =\frac{(1.905 \times 1.78 \times 1.78 \times 1.78)}{1.78 \times 1.78}$	× 10 ^{–3} (mol o <u>10^{–3})²</u> ✓ 10 ^{–5} bl dm ^{–3})	dm-3) √	2	2.4×2	ALLOW 2SF up to calculator value of 1.905460718 x 10 ⁻³ ALLOW use of [HA] Mark is for working.

Question	Answer	Marks	AO element	Guidance
(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE	4	3.3×3	ALLOW ECF
	If answer = 2.4×10^{-2} (mol dm ⁻³) award 4 marks			ALLOW [HA] and [A ⁻] in working
	Calculation of H ⁺ in buffer [H ⁺] $_{buffer} = 10^{-4.00}$ OR 1×10^{-4} (mol dm ⁻³) \checkmark			
	Calculation of CH ₃ COOH in buffer $n(CH_3COOH)$ OR [CH ₃ COOH] _{buffer} $= \frac{0.204}{1000} \times 400$ OR 8.16×10^{-2} ✓			
	Calculation of [CH ₃ COO ⁻] in buffer (in 1 dm ³)			
	$[CH_3COO^{-}]_{buffer} = 1.78 \times 10^{-5} \times \frac{8.16 \times 10^{-2}}{1 \times 10^{-4}}$ OR 1.5 × 10 ⁻² (mol dm ⁻³) ✓			ALLOW 1.5×10^{-2} up to calculator value 1.45248 $\times 10^{-2}$ (mol dm ⁻³)
	Calculation of original [CH ₃ COO ⁻] (in 600 cm ³) $[CH_{3}COO^{-}]_{initial} = \left(\frac{1.45248 \times 10^{-2} \times 1000}{600}\right)$ $= 2.4 \times 10^{-2} \text{ (mol dm}^{-3}) \checkmark$		3.4×1	ALLOW 2.4×10^{-2} up to calculator value 2.4208×10^{-2} (mol dm ⁻³)
				COMMON ERRORS BUT CHECK WORKING $[CH_3COO^-]_{initial} = 8.7 \times 10^{-3}$ 3 marks 600 and 1000 inverted(CH_3COO^-]_{initial} = 3.6 \times 10^{-6}3 marks $[CH_3COO^-]_{initial} = 3.6 \times 10^{-6}$ 3 marks $[CH_3COO^-]_{initial} = 1.3 \times 10^{-6}$ 2 marks $[CH_3COO^-]_{initial} = 1.3 \times 10^{-6}$ 2 marks $[CH_3COOH] : [H^+]$ inverted $AND 600$ and 1000 invertedNo volumes used = 3.6×10^{-2} 2 marks

Question	Answer	Marks	AO element	Guidance
	ALLOW alternative approach based on Henderson– Hasselbalch equation (ALLOW $-\log K_a$ for $p K_a$) e.g.			ALLOW –log <i>K</i> afor p <i>K</i> a
	$pH = pK_a + \log \frac{[CH_3COOH]}{[CH_3COO^-]} \text{ OR } pK_a - \log \frac{[CH_3COO^-]}{[CH_3COOH]} \text{ OR}$			
	$4 = 4.75 + \log \frac{8.16 \times 10^{-2}}{[CH_3COO^-]} \mathbf{OR} \ 4.75 - \log \frac{[CH_3COO^-]}{8.16 \times 10^{-2}} \checkmark$			
	$\log[CH_3COO^-] = 4 - 4.75 - 1.09 = -1.84 \checkmark$			
	$[CH_3COO^-]_{buffer} = 1.5 \times 10^{-2} \checkmark$			
	$[CH_3COO^-]_{initial} = 2.4 \times 10^{-2} \checkmark$			
	Total	12		

Q	Question		Answer						AO element	Guidance	
15	(a)		Во	nd angle	Name of s	shape		2	1.2×2		
			120((°)	Trigonal pla	nar					
			104-	-105(°)	Non-linear		1			For non-linear,	
			Marl	k by row OF	र by column to	o give hig	her mark			ALLOW bent, v-shaped, angular IGNORE planar, 'not straight'	
			i.e. OR	2 bond an 2 shapes	gles correct ✓						
			ı.e.	bond ang	le AND shape le AND shape	correct	in 1st row ✓ in 2nd row ✓				
	(b)		CH ₃ SO ₂ O	$H + H_2O =$	\Rightarrow CH ₃ SO ₂ O ⁻	+ H ₃ O+	V	4	2.1×2	ALLOW \rightarrow for \rightleftharpoons	
			A1	B2	B1	A2	\checkmark			ALLOW acid–base pairs labelled other way round. i.e. CH ₃ SO ₂ OH + H ₂ O \rightleftharpoons CH ₃ SO ₂ O ⁻ + H ₃ O ⁺	
			For an eq H ₂ O, mark	uilibrium sh acid–base	own using CH pairs by ECF	₃COOH i , i.e.	instead of			A2 B1 B2 A1 ALLOW small slip	
			CH3SO2OH	I + CH₃COC)H , CH₃SO₂(O [−] + CH3	COOH2+ 🗵			If ONE charge is missing from equilibrium	
			A1	B2	B1		A2 ECF√			ALLOW ECF for acid–base pairs mark	
			CH ₃ SO ₂ O	H dissociate	es more (than	CH₃CO0	CH)				
			OR CH ₃ S0	D2OH is a s	tronger acid 🗸	/			3.1	IGNORE 'more acidic'	
			ORA in to	rms of CHa	COOHbeing	a woakor	racid			Response needs silengin/dissociation	
					ooonibollig	a weaker				ALLOW maths explanation for final 2 marks, e.g.	
			Student is	correct						$K_{a}(CH_{3}COOH) = 10^{-(4.76)} = 1.74 \times 10^{-5}$ [H+1 = $\sqrt{(1.74 \times 10^{-5}) \times 1} = 4.17 \times 10^{-3}$	
			(sulfonic a	acid has) lov	wer p <i>K</i> a/highe	r <i>K</i> a OR c	preater [H+]			$pH = -log 4.17 \times 10^{-3} = 2.38 \checkmark$	
			ORA✓	,,					32		
									0.2	$K_{a}(CH_{3}SO_{2}OH) = 10^{-(-1.90)} = 79.4$	
										$[\Pi^{-}] = N(79.4) \times 1 = 8.91$ pH = -log 8.91 = -0.95 \checkmark	
										BOTH pH calcs subsumes 'Student is correct'	

Question	Answer	Marks	AO element	Guidance
(c)	$\begin{array}{c} \overbrace{H_{3}C} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	4	3.1×4	IGNORE any added charges OR dipoles. Marks solely for curly arrows IGNORE any curly arrows on bottom structures (not in boxes): $H_3C - \bigcup_{i=0}^{O} - \bigcup_{i=0}^{O} + HOCH_3$
	Total	10		